Standing waves for a generalized Davey-Stewartson system: Revisited
نویسندگان
چکیده
The existence of standing waves for a generalized Davey–Stewartson (GDS) system was shown in Eden and Erbay [8] using an unconstrainted minimization problem. Here, we consider the same problem but relax the condition on the parameters to χ+b < 0 or χ + b m1 < 0. Our approach, in the spirit of Berestycki, Gallouët and Kavian [3] and Cipolatti [6], is to use a constrained minimization problem and utilize Lions’ concentrationcompactness theorem [11]. When both methods apply we show that they give the same minimizer and obtain a sharp bound for a Gagliardo–Nirenberg type inequality. As in [8], this leads to a global existence result for small-mass solutions. Moreover, following an argument in Eden, Erbay and Muslu [9] we show that when p > 2, the L-norms of solutions to the Cauchy problem for a GDS system converge to zero as t→∞.
منابع مشابه
On the existence of special solutions of the generalized Davey-Stewartson system
In this note we show that for certain choice of parameters the hyperbolic–elliptic–elliptic generalized Davey–Stewartson system admits time-dependent travelling wave solutions of the kind given in [V.A. Arkadiev, A.K. Pogrebkov, M.C. Polivanov, Inverse scattering transform method and soliton solutions for Davey–Stewartson II equation, Physica D 36 (1989) 189–197] for the hyperbolic Davey–Stewar...
متن کاملExact Solutions of Generalized Boussinesq-Burgers Equations and (2+1)-Dimensional Davey-Stewartson Equations
We study two coupled systems of nonlinear partial differential equations, namely, generalized Boussinesq-Burgers equations and 2 1 -dimensional Davey-Stewartson equations. The Lie symmetry method is utilized to obtain exact solutions of the generalized Boussinesq-Burgers equations. The travelling wave hypothesis approach is used to find exact solutions of the 2 1 dimensional Davey-Stewartson eq...
متن کاملQuadratic-Argument Approach to the Davey-Stewartson Equations
The Davey-Stewartson equations are used to describe the long time evolution of a threedimensional packets of surface waves. Assuming that the argument functions are quadratic in spacial variables, we find in this paper various exact solutions modulo the most known symmetry transformations for the Davey-Stewartson equations.
متن کاملInstability and decay of solitary waves in the Davey-Stewartson 1 system
The exact solutions to the Davey-Stewartson 1 equations are constructed to describe the development of a transversal solitary wave instability. Two types of plane dark soliton decays into two-dimensional solitary waves are found and analysed. It is also shown that the transversal instability of one-dimensional waveguides leads only to a shift of their drift velocity under the action of nonlocal...
متن کاملMass Concentration for the Davey-stewartson System
This paper is concerned with the analysis of blow-up solutions to the elliptic-elliptic Davey-Stewartson system, which appears in the description of the evolution of surface water waves. We prove a mass concentration property for H-solutions, analogous to the one known for the L-critical nonlinear Schrödinger equation. We also prove a mass concentration result for L -solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 21 شماره
صفحات -
تاریخ انتشار 2008